
ECE 4760 Lab 3 PID Control of 1D Helicopter
Ridhwan Ahmed and Nikita Dolgopolov

Lab Group 3

April 8th, 2025

 High Level Overview:
The goal of LAB 3 is to assemble and develop software for a 1D helicopter. The helicopter is assembled
with the use of a stick with an IMU sensor and a powerful fan at the end connected to the fixed table via
hinge. The sensor is used to get data about the current tilt angle of the assembly and the speed of its
motion. To control the motor, PWM is used and the power is supplied via a specially-made optically
isolated board.

Figure 1: Full Project Assembly

The hardware in use for this project are RP2040 microcontroller, a reset button, a control button, a VGA
screen with relevant circuitry and wiring, a motor driving circuit, inertial measurement unit and the motor
assembly.

Figure 2: Helicopter Arm Assembly

Figure 3: Project Circuitry and Electronics

The Software side of the project includes the following blocks: PID control, fixed point decimal
arithmetics for speed, VGA screen communication and graphics, button press debouncing, and filtering of
sensor readings.

Software Logic Overview
High-level Overview

The main blocks of the software include sensor reading, PID controls calculation and writing, graphics,
and sequence control via button press and debouncing logic. The IMU data from gyroscope and
accelerometer is filtered and processed to be sent over to the PID controller for calculation of the control
input. The sensor data is also used to plot the position of the arm and other relevant values on the VGA
screen. On the button press, a predefined motion sequence is executed by the arm by setting different
control inputs to the motor. The interrupt is called at the frequency of 1000Hz, and PWM value is
adjusted, sensor is read, and button is debounced inside of the interrupt.service routine.

Sensor Data and Filtering:

The gyroscope outputs information about the angular speed of the arm, while the accelerometer measures
force components in different directions. The angle of the arm can be calculated by taking an appropriate
arctangent of the acceleration readings with the use of the geometry and direction of gravity vector. The
sensor readings are noisy, and gyro tends to drift over time. Therefore, it makes sense to develop a
complementary filter that looks at the readings of both of the sensors.To achieve this, the gyro reading as
viewed as change in angle (which it pretty much is) and is added to the previous value of the
complementary angle value; to this value, a new readings of the accelerometer angle is added with a
weight of 1/1000 - an alpha filter of a sort. This ensures that the value of the complementary angle does
not change as fast and smoothes it out. This technique, however, turned out to produce a nonzero offset
from the true value and was not strong enough by itself to ensure smoothness. Therefore, to compute the

current angle, a value of 17 degrees is added to the value of the complementary angle and then the current
angle is passed through the alpha filter with coefficients of 0.5 and 0.5 on its new and old values to obtain
a pretty accurate smoothly changing value of the angle of the arm.

PID Controls and PWM

The PID control of the program relies on the current values of the angle of the arm, the rate of its change,
the desired angle, and the history of these values. For proportional control only, the proportional error is
calculated as the difference between the desired arm angle and the current arm angle; for derivative
control, the change in the error is calculated; for the integral control, the proportional error is integrated
over time. To limit integrator windup, the integrated term is reset to 20000 in the case that it reaches a
value of 1000000 - this can happen once in about 40 seconds of operation if the arm is converging to the
desired angle particularly slowly. It is a potential issue for this system due to the fact that the external
force (gravity) is very nonlinear and is highest around an angle of 90 degrees and is reducing towards the
angles of 0 and 180 degrees.

To calculate the value of the control signal, the proportional error, derivative of the error, and the integral
of the error are scaled by weights of proportional gain Kp, derivative gain Kd, and integral gain Ki,
respectively, and added together.

We have converged on the following optimal set of control gain values:
Kp = 36;

Kd = 8000;

Ki = 0.0065;

The control signal is also low-passed to prevent significant spikes in voltage and inductance effects in the
motor circuit and are limited to the region between 0 and 94 percent of the maximum motor PWM.
Below, a sample plot on the VGA screen is presented. While the gyro and duty cycle values can be noisy
and can change rather quickly, the current angle value changes smoothly and closely depicts the actual
angle of the arm. It is a well tuned response with a decaying exponential to move from the old desired
angle value to the new desired angle value of 120 degrees (with a small margin of error). After enough
time, the arm converges to the desired angle with an error of about 1 degree.There are no significant
oscillations on the bottom plot and the desired value is reached within about 300-400 milliseconds.

Figure 4: PID Response

Graphics

In the image below, a typical state of the VGA screen is presented: there are three plots for duty cycle
written to the motor, gyroscope reading, and for the current arm angle in addition to the outputs of the
values of the PID control parameters and angle and duty cycle values.

Figure 5: VGA Screen Graphics

To display parameters, the text is broken down into two parts: static and dynamic. The static text includes
the part of the message that stays unchanged throughout the program, such as the labels to parameters of
PID controls, and is drawn at initialization - we don't need to waste CPU cycles on redrawing it. The
dynamic part of the text, such as the actual values of parameters PID parameters and target and current
angles, actually has to be updated and is redrawn on every frame. The plot axes are also redrawn on each
iteration in case they get erased by a new point on the plot.

To draw the plots, a counter is incremented to increase the x-coordinate of the next points on each plot
with a wraparound at the end of the screen to initial coordinate at the start of the graph. The y-values of
points are calculated from the current values of the parameters scaled to the size of the plot and converted
to int for VGA coordinate. Before drawing the new point, the old point is erased by painting a black
column through the plot at the current x-position.

Button Input and Motion Sequence Logic

The button logic is implemented by configuring a designated GPIO pin as an input with its internal
pull-up enabled. This means that when the button is not pressed, the pin reads a high voltage (logic 1),
and when the button is pressed (assuming the other terminal is tied to ground), it reads low (logic 0).
Within the PWM interrupt service routine (ISR) that runs roughly at 1 kHz, the software continuously
polls the state of the button. When the button is detected as pressed (i.e. the GPIO input returns 0), the

code marks that the button is being held by setting a flag (button_held = true) and cancels any active
sequence (sequence_active = false). In this pressed state, the motor control command is forced to zero (or
set to a “motor off” value), ensuring that the beam remains in a safe “vertical down” position (or
otherwise defined safe state) while the button is held. Once the button is released (the GPIO reads high
again) and if the system was previously in the "button held" state, a transition occurs: the flag button_held
is cleared and sequence_active is set to true. At that exact moment, the system records the current
millisecond counter as sequence_start to mark the beginning of a timed sequence setting some base
parameters for our PID Controller. When sequence_active is true, the ISR uses the elapsed time (the
difference between the current time and sequence_start) to update the desired_angle following a
predefined sequence of setpoints (for example, horizontal for the first second, then a specified angle
above horizontal, etc.). This state machine ensures that the button press–release event triggers an
automatic, time‐based change in the beam’s setpoint. Once the sequence completes, control reverts to the
idle state until another button press is detected.

​
Figure 6: Diagram of Intended FSM For Button Logic

Motor Control Board Overview

Figure 7: Implementation of Motor Controller

This motor controller is designed to drive a DC motor at higher currents and voltages than a
microcontroller pin can handle directly. The schematic below shows the intended layout using a 4N35
optocoupler and an N-channel MOSFET, along with a kill switch circuit. One of the key goals is to
provide electrical isolation between the low-voltage control signals (from the microcontroller) and the
higher-voltage motor supply. The circuit achieves this by driving the LED side of the 4N35 with a PWM
signal from the microcontroller; the phototransistor side of the 4N35, which is physically isolated,
switches the gate of the MOSFET. As a result, the microcontroller is protected from voltage spikes or
other high-current events on the motor side. The kill switch is placed in series with the motor’s power or
the MOSFET’s supply lines, allowing a user to cut off the motor power safely in case of emergency or
while making system changes.

​ ​ ​ Figure 8: Electrical Schematic for Motor Controller

In the schematic, the bench supply provides around 12 V to the motor, and the MOSFET is configured as
a low-side switch: the motor’s positive terminal is connected to the 12 V supply, and the motor’s negative
terminal goes to the drain (D) of the MOSFET. The source (S) of the MOSFET is connected to ground. A
1 MΩ resistor from gate to source is often shown, ensuring the gate remains at ground potential when the
circuit is unpowered or the optocoupler transistor is off. This avoids a floating gate, which could
accidentally turn the MOSFET on. There is also a protective diode across the motor or within the circuit
to deal with inductive voltage spikes generated when the motor is switched off. The optocoupler (4N35),
the MOSFET, and the kill switch all work together to yield a compact driver board capable of switching
sizable currents at the motor while keeping the microcontroller fully isolated.

Safety Measures of the Motor Controller

Putting the circuit in a general safety perspective, it's important to consider how the system integrates as a
whole to address several key safety questions.

A capacitor is placed across the motor supply to help filter high-frequency noise generated by rapid
switching of the motor, thus preventing voltage spikes from propagating into the rest of the system. A
current limiting resistor is used to restrict the current either through the input LED of the optocoupler or
into the MOSFET gate, ensuring that neither the LED nor the switching transistor is driven beyond safe
operating limits. The use of optical isolation (via a 4N35 or similar optocoupler) provides a barrier
between the microcontroller’s low-voltage domain and the higher-power motor circuit, protecting
sensitive control electronics from large voltage transients or grounding issues that may occur on the motor
side. Finally, a diode is typically placed in parallel with the inductive load (the motor) to clamp
high-voltage spikes when the motor current is abruptly interrupted; this diode dissipates the inductive
energy safely and prevents damaging voltage surges across the switching transistor.

Together, these components—capacitor, resistor, optocoupler, and diode—significantly enhance the
controller’s overall safety, reliability, and noise immunity.

Debugging and Testing Strategies

To draw the graphs on the VGA screen, we use a step-by-step approach of implementing changes to the
code and looking at the result - it can be tricky to correctly align all elements of the screen otherwise.
To tune th ePID controller, we were looking at the overshoot, settling time, and stability metrics - mostly
visual. A high overshoot of the arm when moving to a new position indicates that damping needs to be

increased or proportional gain needs to be decreased. High proportional and integral gains gave us faster
settling times.
We also noticed that our accelerometer seemed to have an angle offset - it did not output 0 degrees in the
0-degree configuration, so we had to add a value of 17 degrees to it to calibrate the readings.

​

Appendix:

/**

 * V. Hunter Adams (vha3@cornell.edu)

 *

 * This demonstration utilizes the MPU6050.

 * It gathers raw accelerometer/gyro measurements, scales

 * them, and plots them to the VGA display. The top plot

 * shows gyro measurements, bottom plot shows accelerometer

 * measurements.

 *

 * HARDWARE CONNECTIONS

 * - GPIO 16 ---> VGA Hsync

 * - GPIO 17 ---> VGA Vsync

 * - GPIO 18 ---> 330 ohm resistor ---> VGA Red

 * - GPIO 19 ---> 330 ohm resistor ---> VGA Green

 * - GPIO 20 ---> 330 ohm resistor ---> VGA Blue

 * - RP2040 GND ---> VGA GND

 * - GPIO 8 ---> MPU6050 SDA

 * - GPIO 9 ---> MPU6050 SCL

 * - 3.3v ---> MPU6050 VCCf

 * - RP2040 GND ---> MPU6050 GND

 */

// Include standard libraries

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

// Include PICO libraries

#include "pico/stdlib.h"

#include "pico/multicore.h"

// Include hardware libraries

#include "hardware/pwm.h"

#include "hardware/dma.h"

#include "hardware/irq.h"

#include "hardware/adc.h"

#include "hardware/pio.h"

#include "hardware/i2c.h"

// Include custom libraries

#include "vga16_graphics.h"

#include "mpu6050.h"

#include "pt_cornell_rp2040_v1_3.h"

// PUSH BUTTON DEF

#define PUSH_BUTTON 15

// Arrays in which raw measurements will be stored

fix15 acceleration[3], gyro[3];

// character array

char screentext[40];

// draw speed

int threshold = 10 ;

// Some macros for max/min/abs

#define min(a,b) ((a<b) ? a:b)

#define max(a,b) ((a<b) ? b:a)

#define abs(a) ((a>0) ? a:-a)

// semaphore

static struct pt_sem vga_semaphore ;

// Some paramters for PWM

#define WRAPVAL 5000

#define CLKDIV 25.0f

uint slice_num ;

// GPIO we're using for PWM

#define PWM_OUT 4

// PWM duty cycle

volatile int control ;

volatile int old_control;

volatile int control_lp;

// Arrays in which raw measurements will be stored

fix15 acceleration[3], gyro[3];

float current_angle = 0.0; // Measured angle (e.g., from accelerometer)

float last_angle = 0.0;

float desired_angle = 8.5; // Setpoint

fix15 gyro_angle_delta;

fix15 accel_angle;

fix15 complementary_angle;

//Global variables for PID

volatile float Kp = 0.0f;

volatile float Ki = 0.0f;

volatile float Kd = 0.0f;

// 60,25,6000,0.025

//100,45,6000,0.005

// x,35,8000,0.005

// want Kp ~ 34, Kd ~ 3000,

volatile float error = 0.0f;

volatile float last_error = 0.0f;

volatile float integral = 0.0f;

volatile float derivative = 0.0f;

 // For timing-based sequence

 volatile uint32_t ms_count = 0; // increments ~1 kHz in ISR

 volatile bool button_held = false;

 volatile bool sequence_active = false;

 volatile uint32_t sequence_start = 0;

// Interrupt service routine

void on_pwm_wrap() {

 // Clear the interrupt flag that brought us here

 // pwm_clear_irq(pwm_gpio_to_slice_num(5));

 pwm_clear_irq(pwm_gpio_to_slice_num(PWM_OUT));

 ms_count++;

// ----------------- BUTTON FSM ----------------------

 bool button_state = (gpio_get(PUSH_BUTTON)==0);

 if (button_state){

 // case that the button is pressed

 button_held = true;

 sequence_active = false; // indicates to terminate the running

programs

 control = 0; // turns the motor off

 //force the immediate update in this case --> could use any val

for old control

 old_control = -1;

 pwm_set_chan_level(slice_num, PWM_CHAN_A, 0);

 }

 else {

 // Button is not pressed

 if(button_held){

 //transition to the pressed to not pressed conditions

 button_held = false;

 sequence_active = true;

 sequence_start = ms_count;

 Kp = 36;

 Kd = 8000;

 Ki = 0.0065;

 }

 }

 if(sequence_active){

 //when we set this case --> our trigger to rewrite the desired

angles

 uint32_t t = ms_count - sequence_start; // use this t val to drive

the conditional updates

 // Desired Sequence:

 // 0..1s => set angle to horizontal

 // 1..5s => keep horizontal

 // 5..10s => 30 deg above

 // 10..15s => 30 deg below

 // 15s+ => back to horizontal

 if (t < 100) {

 desired_angle = 30.0f;

 }

 else if (t < 200) {

 desired_angle = 40.0f;

 }

 else if (t < 300) {

 desired_angle = 50.0f;

 }

 else if (t < 400) {

 desired_angle = 60.0f;

 }

 else if (t < 1000) {

 desired_angle = 90.0f; // horizontal

 }

 else if (t < 5000) {

 desired_angle = 90.0f; // still horizontal

 }

 else if (t < 10000) {

 desired_angle = 120.0f; // 30 above

 }

 else if (t < 15000) {

 desired_angle = 60.0f; // 30 below

 }

 else if (t> 20000){

 sequence_active = false;

 }

 else {

 desired_angle = 90.0f; // back to horizontal

 // maybe stop sequence ??

 // sequence_active = false;

 }

 }

 // Read the IMU

 // NOTE! This is in 15.16 fixed point. Accel in g's, gyro in deg/s

 // If you want these values in floating point, call fix2float15() on

 // the raw measurements.

 mpu6050_read_raw(acceleration, gyro);

 // float gyro_f = fix2float15(gyro[2]);

 gyro_angle_delta = multfix15(gyro[0], zeropt001) ; //HERE changed to

gyro 0

 accel_angle = multfix15(float2fix15(atan2(acceleration[2],

-acceleration[1])), oneeightyoverpi);

 // current_angle = 7+180/M_PI * atan2(fix2float15(acceleration[2]),

-fix2float15(acceleration[1]));

 // ADJUST COEFFICIENTS HERE FOR FASTER RESPONSE?

 complementary_angle = multfix15(complementary_angle +

gyro_angle_delta, zeropt999) + multfix15(accel_angle, zeropt001); //PLUS

or MINUS gyro angle

 current_angle = fix2float15(complementary_angle) + 17.0;

 float dt = 0.001;

 //alpha filter

 float alpha = 0.5;

 current_angle = alpha*current_angle + (1-alpha)*(last_angle);

 // printf("%f", current_angle);

 error = desired_angle-current_angle;

 integral = integral + error;

 derivative = (error - last_error); //HERE

 if (abs(integral) > 1000000) {

 integral = 20000;

 }

 control = Kp*(error) + Kd*derivative + Ki * integral;;

 //HERE TO LOW PASS CONTROL

 control_lp = control_lp + ((control - control_lp)>>4) ;

 control = control_lp;

 // limit the control value

 if (control > 4700){

 control = 4700;

 }

 else if (control < 0){

 control = 0;

 }

 if (control!=old_control) {

 old_control = control ;

 pwm_set_chan_level(slice_num, PWM_CHAN_A, control);

 }

 last_angle = current_angle;

 last_error = error;

 // Signal VGA to draw

 PT_SEM_SIGNAL(pt, &vga_semaphore);

}

// Thread that draws to VGA display

static PT_THREAD (protothread_vga(struct pt *pt))

{

 // Indicate start of thread

 PT_BEGIN(pt) ;

 // We will start drawing at column 81

 static int xcoord = 81 ;

 // Rescale the measurements for display

 static float OldRange = 500. ; // (+/- 250)

 static float NewRange = 100. ; // (looks nice on VGA)

 static float OldMin = 0. ;

 static float OldMax = 250. ;

 int plot_height = 100;

 // Control rate of drawing

 static int throttle ;

 // Draw the static aspects of the display

 setTextSize(1) ;

 setTextColor(WHITE);

 // Draw bottom plot

 drawHLine(75, 370, 5, CYAN) ;

 drawHLine(75, 370+plot_height/2, 5, CYAN) ;

 drawHLine(75, 370+plot_height, 5, CYAN) ;

 drawVLine(80, 370, plot_height, CYAN) ;

 sprintf(screentext, "90") ;

 setCursor(50, 420) ;

 writeString(screentext) ;

 sprintf(screentext, "+180") ;

 setCursor(50, 370) ;

 writeString(screentext) ;

 sprintf(screentext, "0") ;

 setCursor(50, 470) ;

 writeString(screentext) ;

 // Draw top plot

 drawHLine(75, 90, 5, CYAN) ;

 drawHLine(75, 90+plot_height/2, 5, CYAN) ;

 drawHLine(75, 90+plot_height, 5, CYAN) ;

 drawVLine(80, 90, plot_height, CYAN) ;

 sprintf(screentext, "100") ;

 setCursor(45, 90) ;

 writeString(screentext) ;

 sprintf(screentext, "0") ;

 setCursor(45, 190) ;

 writeString(screentext) ;

 // Draw middle plot

 drawHLine(75, 240, 5, CYAN) ;

 drawHLine(75, 240+plot_height/2, 5, CYAN) ;

 drawHLine(75, 240+plot_height, 5, CYAN) ;

 drawVLine(80, 240, plot_height, CYAN) ;

 sprintf(screentext, "+250") ;

 setCursor(45, 240) ;

 writeString(screentext) ;

 sprintf(screentext, "-250") ;

 setCursor(45, 340) ;

 writeString(screentext) ;

 sprintf(screentext, "0") ;

 setCursor(50, 290) ;

 writeString(screentext) ;

 while (true) {

 // Wait on semaphore

 PT_SEM_WAIT(pt, &vga_semaphore);

 // Increment drawspeed controller

 throttle += 1 ;

 // If the controller has exceeded a threshold, draw

 if (throttle >= threshold) {

 // Zero drawspeed controller

 throttle = 0 ;

 // Erase a column

 drawVLine(xcoord, 0, 490, BLACK) ;

 // Draw bottom plot (multiply by 120 to scale from +/-2 to

+/-250)

 drawPixel(xcoord, 420 -

(int)((current_angle)*plot_height/180/2), GREEN) ;

 drawHLine(81, 420, 528, WHITE);

 sprintf(screentext, "Current Angle:") ;

 setCursor(5, 352) ;

 writeString(screentext) ;

 // Draw middle plot

 drawPixel(xcoord, 290 -

(int)(NewRange*((float)((fix2float15(gyro[0]))-OldMin)/OldRange)), GREEN)

;

 drawHLine(81, 290, 528, WHITE);

 sprintf(screentext, "Gyro:") ;

 setCursor(5, 220) ;

 writeString(screentext) ;

 //Draw top plot HERE

 drawPixel(xcoord, 190 - (int)(control/50), GREEN) ;

 drawHLine(81, 190, 528, WHITE);

 sprintf(screentext, "Duty Cycle:") ;

 setCursor(5, 70) ;

 writeString(screentext) ;

 // Update horizontal cursor

 if (xcoord < 609) {

 xcoord += 1 ;

 }

 else {

 xcoord = 81 ;

 }

 setTextColor2(WHITE, BLACK);

 float toprint = control/50;

 snprintf(screentext, 6, "%f", toprint);

 setCursor(450, 20) ;

 writeString(screentext) ;

 //HERE

 toprint = Kp;

 snprintf(screentext, 6, "%f", toprint);

 setCursor(450, 30) ;

 writeString(screentext) ;

 toprint = Ki;

 snprintf(screentext, 6, "%f", toprint);

 setCursor(450, 40) ;

 writeString(screentext) ;

 toprint = Kd;

 snprintf(screentext, 6, "%f", toprint);

 setCursor(450, 50) ;

 writeString(screentext) ;

 toprint = desired_angle;

 snprintf(screentext, 6, "%f", toprint);

 setCursor(450, 60) ;

 writeString(screentext) ;

 toprint = current_angle;

 snprintf(screentext, 6, "%f", toprint);

 setCursor(450, 70) ;

 writeString(screentext) ;

 toprint = sequence_active;

 snprintf(screentext, 6, "%f", toprint);

 setCursor(450, 80) ;

 writeString(screentext) ;

 // Print the parameters //HERE

 sprintf(screentext, "Duty Cycle in percent:") ;

 setCursor(300, 20) ;

 writeString(screentext);

 sprintf(screentext, "Proportional Gain:") ;

 setCursor(300, 30) ;

 writeString(screentext);

 sprintf(screentext, "Integral Gain:") ;

 setCursor(300, 40) ;

 writeString(screentext);

 sprintf(screentext, "Differential Gain:") ;

 setCursor(300, 50) ;

 writeString(screentext);

 sprintf(screentext, "Target Angle") ;

 setCursor(300, 60) ;

 writeString(screentext);

 sprintf(screentext, "Current Angle") ;

 setCursor(300, 70) ;

 writeString(screentext);

 sprintf(screentext, "Sequence Active") ;

 setCursor(300, 80) ;

 writeString(screentext);

 }

 }

 // Indicate end of thread

 PT_END(pt);

}

// User input thread. User can change draw speed

static PT_THREAD (protothread_serial(struct pt *pt))

{

 PT_BEGIN(pt) ;

 static char classifier ;

 static int input ;

 static int angle_in;

 static int Kp_in;

 static int Kd_in;

 static float Ki_in;

 static float float_in ;

 while(1) {

 sprintf(pt_serial_out_buffer, "input a desired angle (0-180), Kp,

Ki, Kd as ints in [angle,Kp,Kd,Ki]: ");

 serial_write ;

 // spawn a thread to do the non-blocking serial read

 serial_read ;

 // convert input string to number

 // sscanf(pt_serial_in_buffer,"%d", &input) ;

 sscanf(pt_serial_in_buffer, "%d,%d,%d,%f", &angle_in, &Kp_in,

&Kd_in, &Ki_in);

 Kp = Kp_in;

 Kd = Kd_in;

 Ki = Ki_in;

 if (angle_in > 180) continue ;

 else if (angle_in < 0) continue ;

 else desired_angle = angle_in ;

 }

 PT_END(pt) ;

}

// Entry point for core 1

void core1_entry() {

 pt_add_thread(protothread_vga) ;

 pt_schedule_start ;

}

int main() {

 // Initialize stdio

 stdio_init_all();

 // Initialize VGA

 initVGA() ;

//

 ///////////////////////// I2C CONFIGURATION

////////////////////////////

 i2c_init(I2C_CHAN, I2C_BAUD_RATE) ;

 gpio_set_function(SDA_PIN, GPIO_FUNC_I2C) ;

 gpio_set_function(SCL_PIN, GPIO_FUNC_I2C) ;

 // Pullup resistors on breakout board, don't need to turn on internals

 // gpio_pull_up(SDA_PIN) ;

 // gpio_pull_up(SCL_PIN) ;

 // MPU6050 initialization

 mpu6050_reset();

 mpu6050_read_raw(acceleration, gyro);

//

 ///////////////////////// PWM CONFIGURATION

////////////////////////////

//

 // Tell GPIO's 4,5 that they allocated to the PWM

 gpio_set_function(5, GPIO_FUNC_PWM);

 gpio_set_function(4, GPIO_FUNC_PWM);

 // Tell GPIO PWM_OUT that it is allocated to the PWM

 gpio_set_function(PWM_OUT, GPIO_FUNC_PWM);

 // Find out which PWM slice is connected to GPIO 5 (it's slice 2, same

for 4)

 slice_num = pwm_gpio_to_slice_num(PWM_OUT);

 // Mask our slice's IRQ output into the PWM block's single interrupt

line,

 // and register our interrupt handler

 pwm_clear_irq(slice_num);

 pwm_set_irq_enabled(slice_num, true);

 irq_set_exclusive_handler(PWM_IRQ_WRAP, on_pwm_wrap);

 irq_set_enabled(PWM_IRQ_WRAP, true);

 // This section configures the period of the PWM signals

 pwm_set_wrap(slice_num, WRAPVAL) ;

 pwm_set_clkdiv(slice_num, CLKDIV) ;

 pwm_set_output_polarity (slice_num, 1, 0);

 // This sets duty cycle

 pwm_set_chan_level(slice_num, PWM_CHAN_B, 0);

 pwm_set_chan_level(slice_num, PWM_CHAN_A, 0);

 // Start the channel

 pwm_set_mask_enabled((1u << slice_num));

 // ADDED: Configure button input

 gpio_init(PUSH_BUTTON);

 gpio_set_dir(PUSH_BUTTON, GPIO_IN);

 gpio_pull_up(PUSH_BUTTON);

 // start core 1

 multicore_reset_core1();

 multicore_launch_core1(core1_entry);

 // start core 0

 pt_add_thread(protothread_serial) ;

 pt_schedule_start ;

}

	ECE 4760 Lab 3 PID Control of 1D Helicopter
	Ridhwan Ahmed and Nikita Dolgopolov
	
	 High Level Overview:
	Debugging and Testing Strategies
	Appendix:

